Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones

Abstract

The shape of a neurone—the projection and branching pattern of axons and dendrites—appears to be determined by a combination of intrinisic and environmental influences1–5. We have previously shown that striatal target neurones influence the biochemical maturation of ascending mesencephalic dopamine (DA) cells in culture6,7, as well as the elongation rate of DA neuntes8. Using a similar approach in which the morphology of individual DA cells can be studied after 3H-DA uptake and autoradiography, we now report on in vitro neurone-glia interactions and show that glial cells exert a morphogenetic effect on DA neurones. Dopaminergic neurones from the mesencephalon were plated on glial monolayers prepared either from the striatal or the mesencephalic region of the embryonic brain. On mesencephalic glial cells the majority of DA neurones develop a great number of highly branched and varicose neuntes, whereas on striatal glia they only exhibit one long, thin and rather linear neurite. These results demonstrate that glial cells from two different brain regions have distinct properties which could be used to define neuronal polarity observed in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Solomon, F. Cell 16, 165–170 (1979).

    Article  CAS  Google Scholar 

  2. Bray, D. J. Cell Biol. 56, 702–712 (1973).

    Article  CAS  Google Scholar 

  3. Benfey, M. & Aguayo, A. J. Nature 216, 150–152 (1982).

    Article  ADS  Google Scholar 

  4. Berry, M., McConnel, P. & Sievers, J. Curr. Topics devl Biol. 15, 67–101 (1980).

    Article  Google Scholar 

  5. Shankland, P., Bently, D. & Goodman, C. S. Devl Biol. 92, 507–520 (1982).

    Article  CAS  Google Scholar 

  6. Prochiantz, A., di Porzio, U., Kato, A., Berger, B. & Glowinski, J. Proc. natn. Acad. Sci. U.S.A. 76, 5387–5391 (1979).

    Article  ADS  CAS  Google Scholar 

  7. di Porzio, U., Daguet, M.-C., Glowinski, J. & Prochiantz, A. Nature 288, 370–373 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Denis-Donini, S., Glowinski, J. & Prochiantz, A. J. Neuroscience 3, 2292–2299 (1983).

    Article  CAS  Google Scholar 

  9. Bjorklund, A. & Lindvall, O. Brain Res. 83, 531–537 (1975).

    Article  CAS  Google Scholar 

  10. Fallon, J. H., Riley, J. N. & Moore, R. Y. Neurosci. Letters 7, 157–162 (1978).

    Article  CAS  Google Scholar 

  11. Berger, B. et al. Neuroscience 7, 193–205 (1982).

    Article  CAS  Google Scholar 

  12. Lazarides, E. Nature 283, 249–256 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Prochiantz, A., Delacourte, A., Daguet, M.-C. & Paulin, D. Expl Cell Res. 139, 404–410 (1982).

    Article  CAS  Google Scholar 

  14. Sensenbrenner, M., Devilliers, G., Bock, E. & Porte, A. Differentiation 17, 51–61 (1980).

    Article  CAS  Google Scholar 

  15. Lindsay, R. M., Barber, P. C., Sherwood, M. R. C., Zimmer, J. & Raisman, G. Brain Res. 243, 329–343 (1982).

    Article  CAS  Google Scholar 

  16. Barde, Y. A., Edgar, D. & Thoenen, H. Proc. natn. Acad. Sci. U.S.A. 77, 1199–1203, (1980).

    Article  ADS  CAS  Google Scholar 

  17. Lindsay, R. M. Nature 282, 80–82 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Adler, R. & Varon, S. Devl Biol. 86, 69–80 (1981).

    Article  CAS  Google Scholar 

  19. David, S. & Aguayo, A. J. Science 214, 931–933 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Banker, G. A. Science 209, 809–810 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Touzet, N. & Sensenbrenner, M. Devl Neurosci. 1, 159–163 (1978).

    Article  CAS  Google Scholar 

  22. Patterson, P. H. & Chun, L. L. Y. Proc. natn. Acad. Sci. U.S.A. 71, 3607–3610 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Patterson, P. H. & Chun, L. L. Y. Devl Biol. 56, 263–280 (1977).

    Article  CAS  Google Scholar 

  24. Hemmendinger, L. M., Garber, B. B., Hoffman, P. C. & Heller, A. Proc. natn. Acad. Sci. U.S.A. 78, 1264–1268 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denis-Donini, S., Glowinski, J. & Prochiantz, A. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature 307, 641–643 (1984). https://doi.org/10.1038/307641a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307641a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing