Skip to main content
Log in

Gestational Hypoxia Induces Sex-Differential Methylation of Crhr1 Linked to Anxiety-like Behavior

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stress during gestation increases vulnerability to disease and changes behavior in offspring. We previously reported that hypoxia and restraint during pregnancy sensitized the hypothalamic–pituitary–adrenal (HPA) axis and induced anxiety-like behavior in the adult offspring. Here, we report that gestational intermittent hypoxia (GIH) elicited a sex-dependent anxiety-like behavior in male P90 offspring and activation of corticotropin-releasing hormone (CRH) and CRH type-1 receptor (CRHR1) mRNA in the hypothalamic paraventricular nucleus (PVN) and in male E19 hypothalamus. These linked to demethylation at several specific sites of CpG island of Crhr1 promoter in P90 PVN and E19 embryo hypothalamus in GIH groups. Crhr1 DNA demethylation is more crucial in CpG island 1 than island 2 for activation of CRHR1 mRNA. DNMT3b is required for the Crhr1 DNA methylation than DNMT1 and DNMT3a in increased CRHR1 mRNA. We first address a novel hypothesis that GIH-induced male-sex-dependent demethylation at CpG sites of Crhr1 DNA in promoter triggers elevation of CRHR1 mRNA in PVN and anxiety-like behavior in adult offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49(12):1023–1039

    Article  CAS  PubMed  Google Scholar 

  2. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475

    Article  PubMed  Google Scholar 

  3. Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28(36):9055–9065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213(4514):1394–1397

    Article  CAS  PubMed  Google Scholar 

  5. Carrasco GA, Van de Kar LD (2003) Neuroendocrine pharmacology of stress. Eur J Pharmacol 463(1–3):235–272

    Article  CAS  PubMed  Google Scholar 

  6. Koob GF (1999) Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 46(9):1167–1180

    Article  CAS  PubMed  Google Scholar 

  7. Dautzenberg FM, Hauger RL (2002) The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 23(2):71–77

    Article  CAS  PubMed  Google Scholar 

  8. Bale TL, Vale WW (2004) CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 44:525–557

    Article  CAS  PubMed  Google Scholar 

  9. Chang CP, Pearse RV 2nd, O'Connell S, Rosenfeld MG (1993) Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron 11(6):1187–1195

    Article  CAS  PubMed  Google Scholar 

  10. Chen R, Lewis KA, Perrin MH, Vale WW (1993) Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci U S A 90(19):8967–8971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vita N, Laurent P, Lefort S, Chalon P, Lelias JM, Kaghad M, Le Fur G, Caput D, Ferrara P (1993) Primary structure and functional expression of mouse pituitary and human brain corticotrophin releasing factor receptors. FEBS Lett 335(1):1–5

    Article  CAS  PubMed  Google Scholar 

  12. Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W, Chalmers DT, De Souza EB, Oltersdorf T (1995) Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci U S A 92(3):836–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Perrin M, Donaldson C, Chen R, Blount A, Berggren T, Bilezikjian L, Sawchenko P, Vale W (1995) Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci U S A 92(7):2969–2973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, Koob GF, Vale WW, Lee KF (2000) Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 24(4):410–414

    Article  CAS  PubMed  Google Scholar 

  15. Hauger RL, Risbrough V, Brauns O, Dautzenberg FM (2006) Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol Disord Drug Targets 5(4):453–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kalaria RN, Spoors L, Laude EA, Emery CJ, Thwaites-Bee D, Fairlie J, Oakley AE, Barer DH, Barer GR (2004) Hypoxia of sleep apnoea: cardiopulmonary and cerebral changes after intermittent hypoxia in rats. Respir Physiol Neurobiol 140(1):53–62

    PubMed  Google Scholar 

  17. Vannucci SJ, Hagberg H (2004) Hypoxia–ischemia in the immature brain. J Exp Biol 207(Pt 18):3149–3154

    Article  CAS  PubMed  Google Scholar 

  18. Golan H, Huleihel M (2006) The effect of prenatal hypoxia on brain development: short- and long-term consequences demonstrated in rodent models. Dev Sci 9(4):338–349

    Article  PubMed  Google Scholar 

  19. Patterson AJ, Chen M, Xue Q, Xiao D, Zhang L (2010) Chronic prenatal hypoxia induces epigenetic programming of PKC{epsilon} gene repression in rat hearts. Circ Res 107(3):365–373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gozal D, Reeves SR, Row BW, Neville JJ, Guo SZ, Lipton AJ (2003) Respiratory effects of gestational intermittent hypoxia in the developing rat. Am J Respir Crit Care Med 167(11):1540–1547

    Article  PubMed  Google Scholar 

  21. Fan JM, Chen XQ, Jin H, Du JZ (2009) Gestational hypoxia alone or combined with restraint sensitizes the hypothalamic–pituitary–adrenal axis and induces anxiety-like behavior in adult male rat offspring. Neuroscience 159(4):1363–1373

    Article  CAS  PubMed  Google Scholar 

  22. Zohar I, Weinstock M (2011) Differential effect of prenatal stress on the expression of corticotrophin-releasing hormone and its receptors in the hypothalamus and amygdala in male and female rats. J Neuroendocrinol 23(4):320–328

    Article  CAS  PubMed  Google Scholar 

  23. Brunton PJ, Donadio MV, Russell JA (2011) Sex differences in prenatally programmed anxiety behaviour in rats: differential corticotropin-releasing hormone receptor mRNA expression in the amygdaloid complex. Stress 14(6):634–643

    CAS  PubMed  Google Scholar 

  24. Day JJ, Sweatt JD (2010) DNA methylation and memory formation. Nat Neurosci 13(11):1319–1323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Elliott E, Ezra-Nevo G, Regev L, Neufeld-Cohen A, Chen A (2010) Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat Neurosci 13(11):1351–1353

    Article  CAS  PubMed  Google Scholar 

  26. He XJ, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21(3):442–465

    Article  CAS  PubMed  Google Scholar 

  27. Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD (2009) Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med 180(5):462–467

    Article  CAS  PubMed  Google Scholar 

  28. Paxinos G, Watson C, Pennisi M, Topple A (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J Neurosci Methods 13(2):139–143

    Article  CAS  PubMed  Google Scholar 

  29. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431

    Article  CAS  PubMed  Google Scholar 

  30. Nesterenko TH, Aly H (2009) Fetal and neonatal programming: evidence and clinical implications. Am J Perinatol 26(3):191–198

    Article  PubMed  Google Scholar 

  31. Barnes SK, Ozanne SE (2011) Pathways linking the early environment to long-term health and lifespan. Prog Biophys Mol Biol 106(1):323–336

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Gonzalez P, Zhang L (2012) Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions. Prog Neurobiol 98(2):145–165

    Article  PubMed Central  PubMed  Google Scholar 

  33. Zhang X, Li L, Xie W, Yang D, Heng X, Du Y, Doody RS, Le W (2013) Prenatal hypoxia may aggravate the cognitive impairment and Alzheimer's disease neuropathology in APP(Swe)/PS1(A246E) transgenic mice. Neurobiol Aging 34(3):663–678

    Article  PubMed  Google Scholar 

  34. Weinstock M (2007) Gender differences in the effects of prenatal stress on brain development and behaviour. Neurochem Res 32(10):1730–1740

    Article  CAS  PubMed  Google Scholar 

  35. Morgan CP, Bale TL (2011) Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J Neurosci 31(33):11748–11755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24(3):151–180

    Article  CAS  PubMed  Google Scholar 

  37. de Kloet ER (2008) About stress hormones and resilience to psychopathology. J Neuroendocrinol 20(6):885–892

    Article  PubMed  Google Scholar 

  38. Kokras N, Dalla C, Sideris AC, Dendi A, Mikail HG, Antoniou K, Papadopoulou-Daifoti Z (2012) Behavioral sexual dimorphism in models of anxiety and depression due to changes in HPA axis activity. Neuropharmacology 62(1):436–445

    Article  CAS  PubMed  Google Scholar 

  39. Orozco-Cabal L, Pollandt S, Liu J, Shinnick-Gallagher P, Gallagher JP (2006) Regulation of synaptic transmission by CRF receptors. Rev Neurosci 17(3):279–307

    CAS  PubMed  Google Scholar 

  40. Bell KF, Claudio Cuello A (2006) Altered synaptic function in Alzheimer's disease. Eur J Pharmacol 545(1):11–21

    Article  CAS  PubMed  Google Scholar 

  41. Fischbach GD (2007) NRG1 and synaptic function in the CNS. Neuron 54(4):495–497

    Article  CAS  PubMed  Google Scholar 

  42. Gallagher JP, Orozco-Cabal LF, Liu J, Shinnick-Gallagher P (2008) Synaptic physiology of central CRH system. Eur J Pharmacol 583(2–3):215–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Heinrichs SC, Lapsansky J, Lovenberg TW, De Souza EB, Chalmers DT (1997) Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Regul Pept 71(1):15–21

    Article  CAS  PubMed  Google Scholar 

  44. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160(1):1–12

    Article  CAS  PubMed  Google Scholar 

  45. Chen XQ, Du JZ, Wang YS (2004) Regulation of hypoxia-induced release of corticotropin-releasing factor in the rat hypothalamus by norepinephrine. Regul Pept 119(3):221–228

    Article  CAS  PubMed  Google Scholar 

  46. Wu Y, Du JZ (2000) Effects of angiotensin II on release of CRH and AVP from hypothalamus during acute hypoxia. Acta Pharmacol Sin 21(11):1035–1038

    CAS  PubMed  Google Scholar 

  47. He JJ, Chen XQ, Wang L, Xu JF, Du JZ (2008) Corticotropin-releasing hormone receptor 1 coexists with endothelin-1 and modulates its mRNA expression and release in rat paraventricular nucleus during hypoxia. Neuroscience 152(4):1006–1014

    Article  CAS  PubMed  Google Scholar 

  48. Reamon-Buettner SM, Borlak J (2007) A new paradigm in toxicology and teratology: altering gene activity in the absence of DNA sequence variation. Reprod Toxicol 24(1):20–30

    Article  CAS  PubMed  Google Scholar 

  49. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262

    Article  CAS  PubMed  Google Scholar 

  50. Chalmers DT, Lovenberg TW, De Souza EB (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 15(10):6340–6350

    CAS  PubMed  Google Scholar 

  51. Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    Article  CAS  PubMed  Google Scholar 

  52. Schulkin J, Gold PW, McEwen BS (1998) Induction of corticotropin-releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology 23(3):219–243

    Article  CAS  PubMed  Google Scholar 

  53. Brunson KL, Eghbal-Ahmadi M, Bender R, Chen Y, Baram TZ (2001) Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proc Natl Acad Sci U S A 98(15):8856–8861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416(6879):396–400

    Article  CAS  PubMed  Google Scholar 

  55. Kolber BJ, Boyle MP, Wieczorek L, Kelley CL, Onwuzurike CC, Nettles SA, Vogt SK, Muglia LJ (2010) Transient early-life forebrain corticotropin-releasing hormone elevation causes long-lasting anxiogenic and despair-like changes in mice. J Neurosci 30(7):2571–2581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Brunton PJ, Russell JA (2010) Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: sex-specific effects. J Neuroendocrinol 22(4):258–271

    Article  CAS  PubMed  Google Scholar 

  57. Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN, Kenny LC, Mortensen PB (2008) Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry 65(2):146–152

    Article  PubMed  Google Scholar 

  58. Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10(11):805–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Chen ZX, Riggs AD (2011) DNA methylation and demethylation in mammals. J Biol Chem 286(21):18347–18353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry Science and Technology of China, National Basic Research Program “973” of China (No. 2012CB518200 and No. 2006CB504100), and the National Natural Science Foundation of China (No. 31171145 and No. 30770807). We would also like to thank Prof. Gareth Leng (Centre for Integrative Physiology, University of Edinburgh) and Prof. IC Bruce (Department of Physiology, School of Medicine, Zhejiang University, China) for editing and commenting on the manuscript.

Conflict of Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Qun Chen or Ji-Zeng Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Meng, FS., Liu, ZY. et al. Gestational Hypoxia Induces Sex-Differential Methylation of Crhr1 Linked to Anxiety-like Behavior. Mol Neurobiol 48, 544–555 (2013). https://doi.org/10.1007/s12035-013-8444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8444-4

Keywords

Navigation