CWE-838: Inappropriate Encoding for Output Context
Weakness ID: 838
Vulnerability Mapping:
ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The product uses or specifies an encoding when generating output to a downstream component, but the specified encoding is not the same as the encoding that is expected by the downstream component.
Extended Description
This weakness can cause the downstream component to use a decoding method that produces different data than what the product intended to send. When the wrong encoding is used - even if closely related - the downstream component could decode the data incorrectly. This can have security consequences when the provided boundaries between control and data are inadvertently broken, because the resulting data could introduce control characters or special elements that were not sent by the product. The resulting data could then be used to bypass protection mechanisms such as input validation, and enable injection attacks.
While using output encoding is essential for ensuring that communications between components are accurate, the use of the wrong encoding - even if closely related - could cause the downstream component to misinterpret the output.
For example, HTML entity encoding is used for elements in the HTML body of a web page. However, a programmer might use entity encoding when generating output for that is used within an attribute of an HTML tag, which could contain functional Javascript that is not affected by the HTML encoding.
While web applications have received the most attention for this problem, this weakness could potentially apply to any type of product that uses a communications stream that could support multiple encodings.
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Integrity Confidentiality Availability
Technical Impact: Modify Application Data; Execute Unauthorized Code or Commands
An attacker could modify the structure of the message or data being sent to the downstream component, possibly injecting commands.
Potential Mitigations
Phase: Implementation
Strategy: Output Encoding
Use context-aware encoding. That is, understand which encoding is being used by the downstream component, and ensure that this encoding is used. If an encoding can be specified, do so, instead of assuming that the default encoding is the same as the default being assumed by the downstream component.
Phase: Architecture and Design
Strategy: Output Encoding
Where possible, use communications protocols or data formats that provide strict boundaries between control and data. If this is not feasible, ensure that the protocols or formats allow the communicating components to explicitly state which encoding/decoding method is being used. Some template frameworks provide built-in support.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, consider using the ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help the programmer encode outputs in a manner less prone to error.
Note that some template mechanisms provide built-in support for the appropriate encoding.
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Software Development" (CWE-699)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
Class: Not Language-Specific (Undetermined Prevalence)
Demonstrative Examples
Example 1
This code dynamically builds an HTML page using POST data:
The programmer attempts to avoid XSS exploits (CWE-79) by encoding the POST values so they will not be interpreted as valid HTML. However, the htmlentities() encoding is not appropriate when the data are used as HTML attributes, allowing more attributes to be injected.
Server does not properly handle requests that do not contain UTF-8 data; browser assumes UTF-8, allowing XSS.
Detection Methods
Automated Static Analysis
Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)
Effectiveness: High
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).
(this CWE ID could be used to map to real-world vulnerabilities)
Reason: Acceptable-Use
Rationale:
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
Taxonomy Mappings
Mapped Taxonomy Name
Node ID
Fit
Mapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011)
IDS13-J
Use compatible encodings on both sides of file or network IO