CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-532: Insertion of Sensitive Information into Log File

Weakness ID: 532
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
Information written to log files can be of a sensitive nature and give valuable guidance to an attacker or expose sensitive user information.
+ Extended Description

While logging all information may be helpful during development stages, it is important that logging levels be set appropriately before a product ships so that sensitive user data and system information are not accidentally exposed to potential attackers.

Different log files may be produced and stored for:

  • Server log files (e.g. server.log). This can give information on whatever application left the file. Usually this can give full path names and system information, and sometimes usernames and passwords.
  • log files that are used for debugging
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Confidentiality

Technical Impact: Read Application Data

Logging sensitive user data often provides attackers with an additional, less-protected path to acquiring the information.
+ Potential Mitigations

Phases: Architecture and Design; Implementation

Consider seriously the sensitivity of the information written into log files. Do not write secrets into the log files.

Phase: Distribution

Remove debug log files before deploying the application into production.

Phase: Operation

Protect log files against unauthorized read/write.

Phase: Implementation

Adjust configurations appropriately when software is transitioned from a debug state to production.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.538Insertion of Sensitive Information into Externally-Accessible File or Directory
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.200Exposure of Sensitive Information to an Unauthorized Actor
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1009Audit
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and DesignCOMMISSION: This weakness refers to an incorrect design related to an architectural security tactic.
Implementation
Operation
+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1

In the following code snippet, a user's full name and credit card number are written to a log file.

(bad code)
Example Language: Java 
logger.info("Username: " + usernme + ", CCN: " + ccn);

Example 2

This code stores location information about the current user:

(bad code)
Example Language: Java 
locationClient = new LocationClient(this, this, this);
locationClient.connect();
currentUser.setLocation(locationClient.getLastLocation());
...

catch (Exception e) {
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setMessage("Sorry, this application has experienced an error.");
AlertDialog alert = builder.create();
alert.show();
Log.e("ExampleActivity", "Caught exception: " + e + " While on User:" + User.toString());
}

When the application encounters an exception it will write the user object to the log. Because the user object contains location information, the user's location is also written to the log.


Example 3

In the example below, the method getUserBankAccount retrieves a bank account object from a database using the supplied username and account number to query the database. If an SQLException is raised when querying the database, an error message is created and output to a log file.

(bad code)
Example Language: Java 
public BankAccount getUserBankAccount(String username, String accountNumber) {
BankAccount userAccount = null;
String query = null;
try {
if (isAuthorizedUser(username)) {
query = "SELECT * FROM accounts WHERE owner = "
+ username + " AND accountID = " + accountNumber;
DatabaseManager dbManager = new DatabaseManager();
Connection conn = dbManager.getConnection();
Statement stmt = conn.createStatement();
ResultSet queryResult = stmt.executeQuery(query);
userAccount = (BankAccount)queryResult.getObject(accountNumber);
}
} catch (SQLException ex) {
String logMessage = "Unable to retrieve account information from database,\nquery: " + query;
Logger.getLogger(BankManager.class.getName()).log(Level.SEVERE, logMessage, ex);
}
return userAccount;
}

The error message that is created includes information about the database query that may contain sensitive information about the database or query logic. In this case, the error message will expose the table name and column names used in the database. This data could be used to simplify other attacks, such as SQL injection (CWE-89) to directly access the database.


+ Observed Examples
ReferenceDescription
verbose logging stores admin credentials in a world-readable log file
SSH password for private key stored in build log
+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.731OWASP Top Ten 2004 Category A10 - Insecure Configuration Management
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.857The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output (FIO)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.963SFP Secondary Cluster: Exposed Data
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1147SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1355OWASP Top Ten 2021 Category A09:2021 - Security Logging and Monitoring Failures
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1417Comprehensive Categorization: Sensitive Information Exposure
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
The CERT Oracle Secure Coding Standard for Java (2011)FIO13-JDo not log sensitive information outside a trust boundary
Software Fault PatternsSFP23Exposed Data
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2006-07-19
(CWE Draft 3, 2006-07-19)
Anonymous Tool Vendor (under NDA)
+ Contributions
Contribution DateContributorOrganization
2009-07-15Fortify Software
Portions of Mitigations, Consequences and Description derived from content submitted by Fortify Software.
+ Modifications
Modification DateModifierOrganization
2008-07-01Sean EidemillerCigital
added/updated demonstrative examples
2008-07-01Eric DalciCigital
updated Potential_Mitigations, Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2009-03-10CWE Content TeamMITRE
updated Relationships
2009-07-27CWE Content TeamMITRE
updated Common_Consequences, Description, Likelihood_of_Exploit, Potential_Mitigations
2011-03-29CWE Content TeamMITRE
updated Name
2011-06-01CWE Content TeamMITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITRE
updated Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2014-02-18CWE Content TeamMITRE
updated Demonstrative_Examples
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2015-12-07CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Modes_of_Introduction, Relationships, Taxonomy_Mappings
2018-03-27CWE Content TeamMITRE
updated Description, Potential_Mitigations, Relationships
2019-01-03CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2019-06-20CWE Content TeamMITRE
updated Name, Relationships
2019-09-19CWE Content TeamMITRE
updated Demonstrative_Examples, Observed_Examples
2020-02-24CWE Content TeamMITRE
updated Name, Relationships, Type
2021-10-28CWE Content TeamMITRE
updated Relationships
2023-04-27CWE Content TeamMITRE
updated Detection_Factors, Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
2023-10-26CWE Content TeamMITRE
updated Demonstrative_Examples, Observed_Examples
+ Previous Entry Names
Change DatePrevious Entry Name
2011-03-29Information Leak Through Log Files
2019-06-20Information Exposure Through Log Files
2020-02-24Inclusion of Sensitive Information in Log Files
Page Last Updated: July 16, 2024