Vulnerability Mapping:
DISCOURAGEDThis CWE ID should not be used to map to real-world vulnerabilities Abstraction: ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
When an actor claims to have a given identity, the product does not prove or insufficiently proves that the claim is correct.
Alternate Terms
authentification:
An alternate term is "authentification", which appears to be most commonly used by people from non-English-speaking countries.
AuthN:
"AuthN" is typically used as an abbreviation of "authentication" within the web application security community. It is also distinct from "AuthZ," which is an abbreviation of "authorization." The use of "Auth" as an abbreviation is discouraged, since it could be used for either authentication or authorization.
AuthC:
"AuthC" is used as an abbreviation of "authentication," but it appears to used less frequently than "AuthN."
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Integrity Confidentiality Availability Access Control
Technical Impact: Read Application Data; Gain Privileges or Assume Identity; Execute Unauthorized Code or Commands
This weakness can lead to the exposure of resources or functionality to unintended actors, possibly providing attackers with sensitive information or even execute arbitrary code.
Potential Mitigations
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an authentication framework or library such as the OWASP ESAPI Authentication feature.
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature
Type
ID
Name
MemberOf
View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Architectural Concepts" (CWE-1008)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
Nature
Type
ID
Name
ChildOf
Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Architecture and Design
Implementation
REALIZATION: This weakness is caused during implementation of an architectural security tactic.
Applicable Platforms
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
Class: Not Language-Specific (Undetermined Prevalence)
Technologies
Class: ICS/OT (Often Prevalent)
Likelihood Of Exploit
High
Demonstrative Examples
Example 1
The following code intends to ensure that the user is already logged in. If not, the code performs authentication with the user-provided username and password. If successful, it sets the loggedin and user cookies to "remember" that the user has already logged in. Finally, the code performs administrator tasks if the logged-in user has the "Administrator" username, as recorded in the user cookie.
(bad code)
Example Language: Perl
my $q = new CGI;
if ($q->cookie('loggedin') ne "true") {
if (! AuthenticateUser($q->param('username'), $q->param('password'))) {
Unfortunately, this code can be bypassed. The attacker can set the cookies independently so that the code does not check the username and password. The attacker could do this with an HTTP request containing headers such as:
(attack code)
GET /cgi-bin/vulnerable.cgi HTTP/1.1 Cookie: user=Administrator Cookie: loggedin=true
[body of request]
By setting the loggedin cookie to "true", the attacker bypasses the entire authentication check. By using the "Administrator" value in the user cookie, the attacker also gains privileges to administer the software.
Example 2
In January 2009, an attacker was able to gain administrator access to a Twitter server because the server did not restrict the number of login attempts [REF-236]. The attacker targeted a member of Twitter's support team and was able to successfully guess the member's password using a brute force attack by guessing a large number of common words. After gaining access as the member of the support staff, the attacker used the administrator panel to gain access to 33 accounts that belonged to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come from the compromised accounts.
In 2022, the OT:ICEFALL study examined products by 10 different Operational Technology (OT) vendors. The researchers reported 56 vulnerabilities and said that the products were "insecure by design" [REF-1283]. If exploited, these vulnerabilities often allowed adversaries to change how the products operated, ranging from denial of service to changing the code that the products executed. Since these products were often used in industries such as power, electrical, water, and others, there could even be safety implications.
Multiple vendors did not use any authentication or used client-side authentication for critical functionality in their OT products.
Chat application skips validation when Central Authentication Service (CAS) is enabled, effectively removing the second factor from two-factor authentication
Python-based authentication proxy does not enforce password authentication during the initial handshake, allowing the client to bypass authentication by specifying a 'None' authentication type.
Chain: Web UI for a Python RPC framework does not use regex anchors to validate user login emails (CWE-777), potentially allowing bypass of OAuth (CWE-1390).
Chain: Python-based HTTP Proxy server uses the wrong boolean operators (CWE-480) causing an incorrect comparison (CWE-697) that identifies an authN failure if all three conditions are met instead of only one, allowing bypass of the proxy authentication (CWE-1390)
Chain: Cloud computing virtualization platform does not require authentication for upload of a tar format file (CWE-306), then uses .. path traversal sequences (CWE-23) in the file to access unexpected files, as exploited in the wild per CISA KEV.
Chain: user is not prompted for a second authentication factor (CWE-287) when changing the case of their username (CWE-178), as exploited in the wild per CISA KEV.
chain: product generates predictable MD5 hashes using a constant value combined with username, allowing authentication bypass.
Detection Methods
Automated Static Analysis
Automated static analysis is useful for detecting certain types of authentication. A tool may be able to analyze related configuration files, such as .htaccess in Apache web servers, or detect the usage of commonly-used authentication libraries.
Generally, automated static analysis tools have difficulty detecting custom authentication schemes. In addition, the software's design may include some functionality that is accessible to any user and does not require an established identity; an automated technique that detects the absence of authentication may report false positives.
Effectiveness: Limited
Manual Static Analysis
This weakness can be detected using tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session.
Manual static analysis is useful for evaluating the correctness of custom authentication mechanisms.
Effectiveness: High
Note: These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.
Manual Static Analysis - Binary or Bytecode
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies
Effectiveness: SOAR Partial
Dynamic Analysis with Automated Results Interpretation
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Web Application Scanner
Web Services Scanner
Database Scanners
Effectiveness: SOAR Partial
Dynamic Analysis with Manual Results Interpretation
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Fuzz Tester
Framework-based Fuzzer
Effectiveness: SOAR Partial
Manual Static Analysis - Source Code
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Manual Source Code Review (not inspections)
Effectiveness: SOAR Partial
Automated Static Analysis - Source Code
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Source code Weakness Analyzer
Context-configured Source Code Weakness Analyzer
Effectiveness: SOAR Partial
Automated Static Analysis
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Configuration Checker
Effectiveness: SOAR Partial
Architecture or Design Review
According to SOAR, the following detection techniques may be useful:
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).
View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).
View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).
View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).
View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).
View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).
This can be resultant from SQL injection vulnerabilities and other issues.
Maintenance
The Taxonomy_Mappings to ISA/IEC 62443 were added in CWE 4.10, but they are still under review and might change in future CWE versions. These draft mappings were performed by members of the "Mapping CWE to 62443" subgroup of the CWE-CAPEC ICS/OT Special Interest Group (SIG), and their work is incomplete as of CWE 4.10. The mappings are included to facilitate discussion and review by the broader ICS/OT community, and they are likely to change in future CWE versions.